

DL 2024: 37th International Workshop on Description Logics

Vivah/EXPIDA

On the Computation of a Productive Partially Ordered Possibilistic Repair

 ${\bf Ahmed \, Laouar^1 \qquad Sihem \, Belabbes^2 \qquad Salem \, Benferhat^1}$

¹ CRIL, Univ. Artois & CNRS, Lens, France, ² LIASD, IUT de Montreuil, Univ. Paris 8, Saint-Denis, France

Context: Inconsistent DL-Lite Knowledge Bases

Dominance

- ▶ \mathcal{B}_1 dominates \mathcal{B}_2 if for all $\varphi_j \in \mathcal{B}_1$, there is $\varphi_k \in \mathcal{B}_2$ such that $\varphi_j \triangleright \varphi_k$.
- {Dean(Bob), FullProf(Alice)} dominates {PostDoc(Bob), VisitingProf(Alice)}.
- {Dean(Bob), Professor(Alice)} does not dominate {FullProf(Alice), PostDoc(Bob)}.

Sound and Complete Tractable Characterization

 $\mathsf{Check-in-C}\pi\text{-}\mathsf{repair}(\varphi \in cl(\mathcal{A}_{\trianglerighteq})\text{: assertion}, \mathcal{K} = \langle \mathcal{T}, \mathcal{A}_{\trianglerighteq} \rangle\text{: KB})$

Repair \equiv Compute a Consistent Subset

Which repairing semantics for partially ordered data?

▶ Should an assertion that is less preferred to a conflict be considered in a repair?
▶ Possiblistic setting: NO! ⇒ a safe and cautious approach.

Semantics of the Closure-Based Partially Ordered Possibilistic Repair

Compute $c\pi(\mathcal{A}_{\geq})$: apply Check-in-C π -repair() on the Closed ABox $cl(\mathcal{A}_{\geq})$

Two Main Optimisations

- ► Focusing on **dominant** conflicts and supports:
 - 1. If C_i dominates C_j then it is enough to check C_i .
 - 2. If $\mathcal{S}_i(\varphi)$ dominates $\mathcal{S}_j(\varphi)$ then it is enough to check $\mathcal{S}_i(\varphi)$.
- ▶ Incrementally computing $C\pi$ -repair ($c\pi$ ++):
 - 1. Compute $\pi(\mathcal{A}_{\triangleright})$ and $cl(\pi(\mathcal{A}_{\triangleright}))$.

R(*A*_{≥i}): standard possibilistic repair.
Checking if *φ* ∈ π(*A*_≥) ⇒ consistency checking of a subset of *A*_≥.
π(*A*_≥) ⊆ *cl*(π(*A*_≥)) ⊆ *c*π(*A*_≥)

Example

2. For all $\varphi \notin cl(\pi(\mathcal{A}_{\geq}))$: if $|\mathcal{S}(\varphi)| = 1$ then $\varphi \notin c\pi(\mathcal{A}_{\geq})$. 3. Check the remaining assertions with the tractable characterization.

Experimental Studies

PostDoc(Bob)VisitingProf(Alice)PostDoc(Bob)VisitingProf(Alice)(a) ABox Conflicts(b) Partially Ordered ABox

 \longrightarrow : strict preference, --: conflict.

 $c\pi(\mathcal{A}_{\succeq}) = \{ \mathsf{Dean}(\mathsf{Bob}), \mathsf{Professor}(\mathsf{Alice}), \mathsf{FacMember}(\mathsf{Bob}), \mathsf{FacMember}(\mathsf{Alice}) \}$ $\pi(\mathcal{A}_{\succeq}) = \{ \mathsf{Dean}(\mathsf{Bob}), \mathsf{FacMember}(\mathsf{Bob}) \}$

Support

- The support of an assertion is a minimal consistent subset of the ABox that allows to derive it.
- ► {Dean(Bob)} supports {FacMember(Bob)} because: (T, {Dean(Bob)}) ⊨ FacMember(Bob).

 $C\pi$ -repair. 💻 only cπ 0.1 -

cl(π)

(c) Proportion of assertions in each repair vs partial order density

Important Results and Conclusion

- Productive repair: using the Deductive Closure.
- ► **Tractable** repair: in polynomial time in ABox's size.
- ► A more **efficient** algorithm in terms of execution time.
- $C\pi$ -repair benefits vs. density of the partial order.
- How to avoid computing the conflicts in $C\pi$ -repair?

Ohttps://github.com/ahmedlaouar/py_reasoner